Sobering Up? EU May Scrap Its Plans To Ban Internal Combustion Engines By 2035

Sobering Up? EU May Scrap Its Plans To Ban Internal Combustion Engines By 2035

https://www.windtaskforce.org/profiles/blogs/sobering-up-eu-may-scr...

By P Gosselin

After a vote in Brussels last Monday evening, a majority of the European Parliament favored a Commission proposal that would no longer automatically classify EVs as climate-neutral vehicles.

In the proposal, the CO2 emissions of EVs would depend on the electricity mix used for charging, meaning EVs would not necessarily be classified as “electric only”.

Also, the EU plans to reassess the phase-out of gasoline/diesel engines, based on the latest data and developments.

So what has brought on this sudden episode of political sobriety in Brussels?

Probably a good dose of reality.

Here are 4 possible reasons behind the EU’s new position:

1. China

The automotive industry and many EU states warn of the economic and social consequences of a ban on gasoline/diesel engines.

EV production plants in Europe cannot compete with the far lower costs in China.

All of Europe’s car production would move overseas

That would result in hundreds of thousands of lost jobs –  and lots of social unrest.

Currently, Europe is already gripped by social unrest as farmers and truckers protest in the streets against radical green policies, and near-unlimited people illegally wandering, through open borders, from all over the world, just as in the US

2. E-car emissions cheating

Currently, electric cars in the EU are given a CO2 emission rating of zero grams!

This zero emissions claim is a lie in most cases, as the calculation doesn’t take true electricity generation mix into account.

Fossil fuels are widely used in Europe to produce the electric power and that is not going to change for decades.

A true accounting would include the CO2 emissions from mine to hazardous landfill

3. Climate-neutral fuels (e-fuels):

Efforts are being made to run gasoline/diesel engines on climate-neutral fuels (e-fuels), which are produced from renewable energies and are thus CO2-neutral, which is a lot of crap, because the UPSTREAM production of the soybeans and corn, etc., have unavoidable CO2 emissions

The EU Commission wants to examine whether newly registered vehicles with gasoline/diesel engines that run on e-fuels can be registered from 2035.

This would effectively suspend the ban on gasoline/diesel engines, as e-fuels can be used emissions-free in practice.

Where would all the cropland come from to produce the raw materials for these fuels?

POLITICALLY INSPIRED, MARGINALLY EFFECTIVE, CORN-TO-ETHANOL PROGRAM

http://www.windtaskforce.org/profiles/blogs/politically-inspired-ma...

REPLACING GASOLINE AND DIESEL FUEL WITH BIOFUELS

https://www.windtaskforce.org/profiles/blogs/replacing-gasoline-and...

4. The 2024 European Parliament election

It is scheduled to be held on 6 to 9 June 2024.

So now is not the time to upset voters with unpopular legislation.

The Brussels bureaucrats probably just want citizens to think they are being pragmatic and will not take a radical course after all.

In summary, the EU may be realizing, banning gasoline/diesel engines, and replacing them with e-cars, is going to cause a lot more damage than good.

APPENDIX 1

World Offshore Wind Capacity Placed on Operation in 2021

During 2021, worldwide offshore wind capacity placed in operation was 17,398 MW, of which China 13,790 MW, and the rest of the world 3,608 MW, of which UK 1,855 MW; Vietnam 643 MW; Denmark 604 MW; Netherlands 402 MW; Taiwan 109 MW

Of the 17,398 MW, just 57.1 MW was floating, about 1/3%

At end of 2021, 50,623 MW was in operation, of which just 123.4 MW was floating, about 1/4%

https://www.energy.gov/eere/wind/articles/offshore-wind-market-repo...

 

Floating Offshore Wind Systems in the Impoverished State of Maine

https://www.windtaskforce.org/profiles/blogs/floating-offshore-wind...

Despite the meager floating offshore MW in the world, pro-wind politicians, bureaucrats, etc., aided and abetted by the lapdog Main Media and "academia/think tanks", in the impoverished State of Maine, continue to fantasize about building 3,000 MW of 850-ft-tall floating offshore wind turbines by 2040!!

 

Maine government bureaucrats, etc., in a world of their own climate-fighting fantasies, want to have about 3,000 MW of floating wind turbines by 2040; a most expensive, totally unrealistic goal, that would further impoverish the already-poor State of Maine for many decades.

 

Those bureaucrats, etc., would help fatten the lucrative, 20-y, tax-shelters of mostly out-of-state, multi-millionaire, wind-subsidy chasers, who likely have minimal regard for:

 

1) Impacts on the environment and the fishing and tourist industries of Maine, and

2) Already-overstressed, over-taxed, over-regulated Maine ratepayers and taxpayers, who are trying to make ends meet in a near-zero, real-growth economy.

 

Those fishery-destroying, 850-ft-tall floaters, with 24/7/365 strobe lights, visible 30 miles from any shore, would cost at least $7,500/ installed kW, or at least $22.5 billion, if built in 2023 (more after 2023)

 

Almost the entire supply of the Maine projects would be designed and made in Europe, then transported across the Atlantic Ocean, in European specialized ships, then unloaded at a new, $500-million Maine storage/pre-assembly/staging/barge-loading area, then barged to European specialized erection ships for erection of the floating turbines. The financing will be mostly by European pension funds.

 

About 300 Maine people would have jobs during the erection phase

The other erection jobs would be by specialized European people, mostly on cranes and ships

About 100 Maine people would have long-term O&M jobs, using European spare parts, during the 20-y electricity production phase.

https://www.maine.gov/governor/mills/news/governor-mills-signs-bill...

 

The Maine woke bureaucrats are falling over each other to prove their “greenness”, offering $millions of this and that for free, but all their primping and preening efforts has resulted in no floating offshore bids from European companies

 

The Maine people have much greater burdens to look forward to for the next 20 years, courtesy of the Governor Mills incompetent, woke bureaucracy that has infested the state government 

 

The Maine people need to finally wake up, and put an end to the climate scare-mongering, which aims to subjugate and further impoverish them, by voting the entire Democrat woke cabal out and replace it with rational Republicans in 2024

The present course leads to financial disaster for the impoverished State of Maine and its people.

The purposely-kept-ignorant Maine people do not deserve such maltreatment

 

Electricity Cost: Assume a $750 million, 100 MW project consists of foundations, wind turbines, cabling to shore, and installation at $7,500/kW.

Production 100 MW x 8766 h/y x 0.40, CF = 350,640,000 kWh/y

Amortize bank loan for $525 million, 70% of project, at 6.5%/y for 20 years, 13.396 c/kWh.

Owner return on $225 million, 30% of project, at 10%/y for 20 years, 7.431 c/kWh

Offshore O&M, about 30 miles out to sea, 8 c/kWh.

Supply chain, special ships, and ocean transport, 3 c/kWh

All other items, 4 c/kWh 

Total cost 13.396 + 7.431 + 8 + 3 + 4 = 35.827 c/kWh

Less 50% subsidies (ITC, 5-y depreciation, interest deduction on borrowed funds) 17.913 c/kWh

Owner sells to utility at 17.913 c/kWh

 

NOTE: The above prices compare with the average New England wholesale price of about 5 c/kWh, during the 2009 - 2022 period, 13 years, courtesy of:

 

Gas-fueled CCGT plants, with low-cost, low-CO2, very-low particulate/kWh

Nuclear plants, with low-cost, near-zero CO2, zero particulate/kWh

Hydro plants, with low-cost, near-zero-CO2, zero particulate/kWh

Cabling to Shore Plus $Billions for Grid Expansion on Shore: A high voltage cable would be hanging from each unit, until it reaches bottom, say about 200 to 500 feet. 
The cables would need some type of flexible support system

There would be about 5 cables, each connected to sixty, 10 MW wind turbines, making landfall on the Maine shore, for connection to 5 substations (each having a 600 MW capacity, requiring several acres of equipment), then to connect to the New England HV grid, which will need $billions for expansion/reinforcement to transmit electricity to load centers, mostly in southern New England.

 

Floating Offshore a Major Financial Burden on Maine People: Rich Norwegian people can afford to dabble in such expensive demonstration follies (See Appendix 2), but the over-taxed, over-regulated, impoverished Maine people would buckle under such a heavy burden, while trying to make ends meet in the near-zero, real-growth Maine economy. Maine folks need lower energy bills, not higher energy bills.

 

APPENDIX 2

Floating Offshore Wind in Norway

Equinor, a Norwegian company, put in operation, 11 Hywind, floating offshore wind turbines, each 8 MW, for a total of 88 MW, in the North Sea. The wind turbines are supplied by Siemens, a German company

Production will be about 88 x 8766 x 0.5, claimed lifetime capacity factor = 385,704 MWh/y, which is about 35% of the electricity used by 2 nearby Norwegian oil rigs, which cost at least $1.0 billion each.

On an annual basis, the existing diesel and gas-turbine generators on the rigs, designed to provide 100% of the rigs electricity requirements, 24/7/365, will provide only 65%, i.e., the wind turbines have 100% back up.

The generators will counteract the up/down output of the wind turbines, on a less-than-minute-by-minute basis, 24/7/365

The generators will provide almost all the electricity during low-wind periods, and 100% during high-wind periods, when rotors are feathered and locked.

The capital cost of the entire project was about 8 billion Norwegian Kroner, or about $730 million, as of August 2023, when all 11 units were placed in operation, or $730 million/88 MW = $8,300/kW. See URL

That cost was much higher than the estimated 5 billion NOK in 2019, i.e., 60% higher

The project is located about 70 miles from Norway, which means minimal transport costs of the entire supply to the erection sites

The project would produce electricity at about 42 c/kWh, no subsidies, at about 21 c/kWh, with 50% subsidies 

In Norway, all work associated with oil rigs is very expensive.

Three shifts of workers are on the rigs for 6 weeks, work 60 h/week, and get 6 weeks off with pay, and are paid well over $150,000/y, plus benefits.

If Norwegian units were used in Maine, the production costs would be even higher in Maine, because of the additional cost of transport of almost the entire supply, including specialized ships and cranes, across the Atlantic Ocean, plus

A high voltage cable would be hanging from each unit, until it reaches bottom, say about 200 to 500 feet. 

The cables would need some type of flexible support system
The cables would be combined into several cables to run horizontally to shore, for at least 25 to 30 miles, to several onshore substations, to the New England high voltage grid.

.

https://www.offshore-mag.com/regional-reports/north-sea-europe/arti...

https://en.wikipedia.org/wiki/Floating_wind_turbine

.

.

APPENDIX 3

Offshore Wind in US and UK

Most folks, seeing only part of the picture, write about wind energy issues that only partially cover the offshore wind situation, which caused major declines of the stock prices of Siemens, Oersted, etc., starting at the end of 2020; the smart money got out
All this well before the Ukraine events, which started in February 2022. See costs/kWh in below article

 

World’s Largest Offshore Wind System Developer Abandons Two Major US Projects as Wind/Solar Bust Continues 
https://www.windtaskforce.org/profiles/blogs/world-s-largest-offsho...

 

US/UK Governments Offshore Wind Goals

1) 30,000 MW of offshore by 2030, by the cabal of climate extremists in the US government 
2) 36,000 MW of offshore by 2030, and 40,000 MW by 2040, by the disfunctional UK government

 

Those US/UK goals were physically unachievable, even if there were abundant, low-cost financing, and low inflation, and low-cost energy, materials, labor, and a robust, smooth-running supply chain, to place in service about 9500 MW of offshore during each of the next 7 years, from start 2024 to end 2030, which has never been done before in such a short time. See URL
 
US/UK 66,000 MW OF OFFSHORE WIND BY 2030; AN EXPENSIVE FANTASY  
https://www.windtaskforce.org/profiles/blogs/biden-30-000-mw-of-off...

US Offshore Wind Electricity Production and Cost

 

Electricity production about 30,000 MW x 8766 h/y x 0.40, lifetime capacity factor = 105,192,000 MWh, or 105.2 TWh. The production would be about 100 x 105.2/4000 = 2.63% of the annual electricity loaded onto US grids.

 

Electricity Cost, c/kWh: Assume a $550 million, 100 MW project consists of foundations, wind turbines, cabling to shore, and installation, at $5,500/kW.

Production 100 MW x 8766 h/y x 0.40, CF = 350,640,000 kWh/y

Amortize bank loan for $385 million, 70% of project, at 6.5%/y for 20 y, 9.824 c/kWh.

Owner return on $165 million, 30% of project, at 10%/y for 20 y, 5.449 c/kWh

Offshore O&M, about 30 miles out to sea, 8 c/kWh.

Supply chain, special ships, ocean transport, 3 c/kWh

All other items, 4 c/kWh 

Total cost 9.824 + 5.449 + 8 + 3 + 4 = 30.273 c/kWh

Less 50% subsidies (ITC, 5-y depreciation, interest deduction on borrowed funds) 15.137 c/kWh

Owner sells to utility at 15.137 c/kWh; developers in NY state, etc., want much more. See Above.

 

Not included: At a future 30% wind/solar penetration on the grid:   

Cost of onshore grid expansion/reinforcement, about 2 c/kWh

Cost of a fleet of plants for counteracting/balancing, 24/7/365, about 2.0 c/kWh

In the UK, in 2020, it was 1.9 c/kWh at 28% wind/solar loaded onto the grid

Cost of curtailments, about 2.0 c/kWh

Cost of decommissioning, i.e., disassembly at sea, reprocessing and storing at hazardous waste sites

.

APPENDIX 4

Levelized Cost of Energy Deceptions, by US-EIA, et al.

Most people have no idea wind and solar systems need grid expansion/reinforcement and expensive support systems to even exist on the grid.

With increased annual W/S electricity percent on the grid, increased grid investments are needed, plus greater counteracting plant capacity, MW, especially when it is windy and sunny around noon-time.

Increased counteracting of the variable W/S output, places an increased burden on the grid’s other generators, causing them to operate in an inefficient manner (more Btu/kWh, more CO2/kWh), which adds more cost/kWh to the offshore wind electricity cost of about 16 c/kWh, after 50% subsidies

The various cost/kWh adders start with annual W/S electricity at about 8% on the grid.

The adders become exponentially greater, with increased annual W/S electricity percent on the grid

 

The US-EIA, Lazard, Bloomberg, etc., and their phony LCOE "analyses", are deliberately understating the cost of wind, solar and battery systems

Their LCOE “analyses” of W/S/B systems purposely exclude major LCOE items.

Their deceptions reinforced the popular delusion, W/S are competitive with fossil fuels, which is far from reality.

The excluded LCOE items are shifted to taxpayers, ratepayers, and added to government debts.

W/S would not exist without at least 50% subsidies

W/S output could not be physically fed into the grid, without items 2, 3, 4, 5, and 6. See list.

 

1) Subsidies equivalent to about 50% of project lifetime owning and operations cost,

2) Grid extension/reinforcement to connect remote W/S systems to load centers

3) A fleet of quick-reacting power plants to counteract the variable W/S output, on a less-than-minute-by-minute basis, 24/7/365 

4) A fleet of power plants to provide electricity during low-W/S periods, and 100% during high-W/S periods, when rotors are feathered and locked,

5) Output curtailments to prevent overloading the grid, i.e., paying owners for not producing what they could have produced

6) Hazardous waste disposal of wind turbines, solar panels and batteries. See image.

.

APPENDIX  5

BATTERY SYSTEM CAPITAL COSTS, OPERATING COSTS, ENERGY LOSSES, AND AGING
https://www.windtaskforce.org/profiles/blogs/battery-system-capital...

 

EXCERPT:

Annual Cost of Megapack Battery Systems; 2023 pricing

Assume a system rated 45.3 MW/181.9 MWh, and an all-in turnkey cost of $104.5 million, per Example 2

Amortize bank loan for 50% of $104.5 million at 6.5%/y for 15 years, $5.484 million/y

Pay Owner return of 50% of $104.5 million at 10%/y for 15 years, $6.765 million/y (10% due to high inflation)

Lifetime (Bank + Owner) payments 15 x (5.484 + 6.765) = $183.7 million

Assume battery daily usage for 15 years at 10%, and loss factor = 1/(0.9 *0.9)

Battery lifetime output = 15 y x 365 d/y x 181.9 MWh x 0.1, usage x 1000 kWh/MWh = 99,590,250 kWh to HV grid; 122,950,926 kWh from HV grid; 233,606,676 kWh loss

(Bank + Owner) payments, $183.7 million / 99,590,250 kWh = 184.5 c/kWh

Less 50% subsidies (ITC, depreciation in 5 years, deduction of interest on borrowed funds) is 92.3c/kWh

At 10% throughput, (Bank + Owner) cost, 92.3 c/kWh

At 40% throughput, (Bank + Owner) cost, 23.1 c/kWh

 

Excluded costs/kWh: 1) O&M; 2) system aging, 1.5%/y, 3) 20% HV grid-to-HV grid loss, 4) grid extension/reinforcement to connect battery systems, 5) downtime of parts of the system, 6) decommissioning in year 15, i.e., disassembly, reprocessing and storing at hazardous waste sites. Excluded costs would add at least 10 - 15 c/kWh
 
NOTE: The 40% throughput is close to Tesla’s recommendation of 60% maximum throughput, i.e., not charging above 80%  full and not discharging below 20% full, to achieve a 15-y life, with normal aging

 

NOTE: Tesla’s recommendation was not heeded by the Owners of the Hornsdale Power Reserve in Australia. They excessively charged/discharged the system. After a few years, they added Megapacks to offset rapid aging of the original system, and added more Megapacks to increase the rating of the expanded system.

http://www.windtaskforce.org/profiles/blogs/the-hornsdale-power-reserve-largest-battery-system-in-australia

 

COMMENTS ON CALCULATION: 

Regarding any project, the bank and the owner have to be paid.
Therefore, I amortized the bank loan and the owner’s investment

If you divide the total of the payments over 15 years by the throughput during 15 years, you get the cost per kWh, as shown.

According to EIA annual reports, almost all battery systems have throughputs less than 10%. I chose 10% for calculations.

A few battery systems have higher throughputs, if they are used to absorb midday solar and discharge it the during peak hour periods of late-afternoon/early-evening. They may reach up to 40% throughput. I chose 40% for calculations.

Remember, you have to draw about 50 MWh from the HV grid to deliver about 40 MWh to the HV grid, because of A-to-Z system losses. That gets worse with aging.

A lot of people do not like these c/kWh numbers, because they have been repeatedly told by self-serving folks, low-cost battery Nirvana is just around the corner, which is a load of crap.

APPENDIX 6 

SolarEdge Technologies shares plunged about two weeks ago, after it warned about decreasing European demand. 

 

Solar Panels Are Much More Carbon-Intensive Than Experts are Willing to Admit

https://www.windtaskforce.org/profiles/blogs/solar-panels-are-more-...

 

SolarEdge Melts Down After Weak Guidance 

https://www.windtaskforce.org/profiles/blogs/wind-solar-implosion-s...

 

The Great Green Crash – Solar Down 40%

https://wattsupwiththat.com/2023/11/08/the-great-green-crash-solar-...

 

APPENDIX 7 

World's Largest Offshore Wind System Developer Abandons Two Major US Projects as Wind/Solar Bust Continues 

https://www.windtaskforce.org/profiles/blogs/world-s-largest-offsho...

 

US/UK 66,000 MW OF OFFSHORE WIND BY 2030; AN EXPENSIVE FANTASY  

https://www.windtaskforce.org/profiles/blogs/biden-30-000-mw-of-off...

 

BATTERY SYSTEM CAPITAL COSTS, OPERATING COSTS, ENERGY LOSSES, AND AGING

https://www.windtaskforce.org/profiles/blogs/battery-system-capital...

 

Regulatory Rebuff Blow to Offshore Wind Projects; Had Asked for Additional $25.35 billion

https://www.windtaskforce.org/profiles/blogs/regulatory-rebuff-blow...

 

Offshore Wind is an Economic and Environmental Catastrophe

https://www.windtaskforce.org/profiles/blogs/offshore-wind-is-an-ec...

 

Four NY offshore projects ask for almost 50% price rise

https://www.windtaskforce.org/profiles/blogs/four-ny-offshore-proje...

 

EV Owners Facing Soaring Insurance Costs in the US and UK

https://www.windtaskforce.org/profiles/blogs/ev-owners-facing-soari...

 

U.S. Offshore Wind Plans Are Utterly Collapsing

https://www.windtaskforce.org/profiles/blogs/u-s-offshore-wind-plan...

 

Values Of Used EVs Plummet, As Dealers Stuck With Unsold Cars

https://www.windtaskforce.org/profiles/blogs/values-of-used-evs-plu...

 

Electric vehicles catch fire after being exposed to saltwater from Hurricane Idalia

https://www.windtaskforce.org/profiles/blogs/electric-vehicles-catc...

 

The Electric Car Debacle Shows the Top-Down Economics of Net Zero Don’t Add Up

https://www.windtaskforce.org/profiles/blogs/the-electric-car-debac...

 

Lifetime Performance of World’s First Offshore Wind System in the North Sea 

https://www.windtaskforce.org/profiles/blogs/lifetime-performance-o...

 

Solar Panels Are Much More Carbon-Intensive Than Experts are Willing to Admit

https://www.windtaskforce.org/profiles/blogs/solar-panels-are-more-...

 

IRENA, a Renewables Proponent, Ignores the Actual Cost Data for Offshore Wind Systems in the UK
https://www.windtaskforce.org/profiles/blogs/irena-a-european-renew...

 

UK Offshore Wind Projects Threaten to Pull Out of Uneconomical Contracts, unless Subsidies are Increased

https://www.windtaskforce.org/profiles/blogs/uk-offshore-wind-proje...

 

CO2 IS A LIFE GAS; NO CO2 = NO FLORA AND NO FAUNA

https://www.windtaskforce.org/profiles/blogs/co2-is-a-life-gas-no-c...

 

AIR SOURCE HEAT PUMPS DO NOT ECONOMICALLY DISPLACE FOSSIL FUEL BTUs IN COLD CLIMATES

https://www.windtaskforce.org/profiles/blogs/air-source-heat-pumps-...

.

IRELAND FUEL AND CO2 REDUCTIONS DUE TO WIND ENERGY LESS THAN CLAIMED    

https://www.windtaskforce.org/profiles/blogs/fuel-and-co2-reduction...

 

APPENDIX 8

Nuclear Plants by Russia

According to the IAEA, during the first half of 2023, a total of 407 nuclear reactors are in operation at power plants across the world, with a total capacity at about 370,000 MW

Nuclear was 2546 TWh, or 9.2%, of world electricity production in 2022

https://www.windtaskforce.org/profiles/blogs/batteries-in-new-england

Rosatom, a Russian Company, is building more nuclear reactors than any other country in the world, according to data from the Power Reactor Information System of the International Atomic Energy Agency, IAEA.

The data show, a total of 58 large-scale nuclear power reactors are currently under construction worldwide, of which 23 are being built by Russia.

.

In Egypt, 4 reactors, each 1,200 MW = 4,800 MW for $30 billion, or about $6,250/kW, 

The cost of the nuclear power plant is $28.75 billion.

As per a bilateral agreement, signed in 2015, approximately 85% of it is financed by Russia, and to be paid for by Egypt under a 22-year loan with an interest rate of 3%.
That cost is at least 40% less than US/UK/EU

.

In Turkey, 4 reactors, each 1,200 MW = 4,800 MW for $20 billion, or about $4,200/kW, entirely financed by Russia. The plant will be owned and operated by Rosatom

.

In India, 6 VVER-1000 reactors, each 1,000 MW = 6,000 MW at the Kudankulam Nuclear Power Plant.

Capital cost about $15 billion. Units 1, 2, 3 and 4 are in operation, units 5 and 6 are being constructed

In Bangladesh: 2 VVER-1200 reactors = 2400 MW at the Rooppur Power Station

Capital cost $12.65 billion is 90% funded by a loan from the Russian government. The two units generating 2400 MW are planned to be operational in 2024 and 2025. Rosatom will operate the units for the first year before handing over to Bangladeshi operators. Russia will supply the nuclear fuel and take back and reprocess spent nuclear fuel.

https://en.wikipedia.org/wiki/Rooppur_Nuclear_Power_Plant

.

Rosatom, created in 2007 by combining several Russian companies, usually provides full service during the entire project life, such as training, new fuel bundles, refueling, waste processing and waste storage in Russia, etc., because the various countries likely do not have the required systems and infrastructures

 

Nuclear: Remember, these nuclear plants reliably produce steady electricity, at reasonable cost/kWh, and have near-zero CO2 emissions

They have about 0.90 capacity factors, and last 60 to 80 years

Nuclear do not require counteracting plants. They can be designed to be load-following, as some are in France

.

Wind: Offshore wind systems produce variable, unreliable power, at very high cost/kWh, and are far from CO2-free, on a mine-to-hazardous landfill basis.
They have lifetime capacity factors, on average, of about 0.40; about 0.45 in very windy places

They last about 20 to 25 years in a salt water environment 
They require: 1) a fleet of quick-reacting power plants to counteract the up/down wind outputs, on a less-than-minute-by-minute basis, 24/7/365, 2) major expansion/reinforcement of electric grids to connect the wind systems to load centers, 3)  a lot of land and sea area, 4) curtailment payments, i.e., pay owners for what they could have produced

 

Major Competitors: Rosatom’s direct competitors, according to PRIS data, are three Chinese companies: CNNC, CSPI and CGN.
They are building 22 reactors, but it should be noted, they are being built primarily inside China, and the Chinese partners are building five of them together with Rosatom.

American and European companies are lagging behind Rosatom, by a wide margin,” Alexander Uvarov, a director at the Atom-info Center and editor-in-chief at the atominfo.ru website, told TASS.

 

Tripling Nuclear A Total Fantasy: During COP28, Kerry called for the world to triple nuclear, from 370,200 MW to 1,110,600 MW, by 2050.

https://phys.org/news/2023-12-triple-nuclear-power-cop28.html

 

Based on past experience in the US and EU, it takes at least 10 years to commission nuclear plants

Plants with about 39 reactors must be started each year, for 16 years (2024 to 2040), to fill the pipeline, to commission the final ones by 2050, in addition to those already in the pipeline.

 

New nuclear: Kerry’s nuclear tripling by 2050, would add 11% of world electricity generation in 2050. See table

Nuclear was 9.2% of 2022 generation. That would become about 5% of 2050 generation, if some older plants are shut down, and plants already in the pipeline are placed in operation, 

Total nuclear would be 11+ 5 = 16%; minimal impact on CO2 emissions and ppm in 2050. 

Infrastructures and Manpower: The building of the new nuclear plants would require a major increase in infrastructures and educating and training of personnel, in addition to the cost of the power plants.

https://www.visualcapitalist.com/electricity-sources-by-fuel-in-202....

Existing Nuclear, MW, 2022

370200

Proposed tripling

3

Tripled Nuxlear, MW, 2050

1110600

New Nuclear, MW

740400

MW/reactor

1200

Reactors

617

New Reactors, rounded

620

Reactors/site

2

Sites

310

New nuclear production, MWh, 2050

5841311760

Conversion factor

1000000

%

New nuclear production, TWh, 2050

5841

11

World total production, TWh, 2050

53000

 

APPENDIX 9

Electricity prices vary by type of customer

Retail electricity prices are usually highest for residential and commercial consumers because it costs more to distribute electricity to them. Industrial consumers use more electricity and can receive it at higher voltages, so supplying electricity to these customers is more efficient and less expensive. The retail price of electricity to industrial customers is generally close to the wholesale price of electricity.

In 2022, the U.S. annual average retail price of electricity was about 12.49¢ per kilowatthour (kWh).1

The annual average retail electricity prices by major types of utility customers in 2022 were:

Residential, 15.12 ¢/kWh; Commercial, 12.55 ¢/kWh; Industrial, 8.45 ¢/kWh; Transportation, 11.66 ¢/kWh

 

Electricity prices vary by locality

Electricity prices vary by locality based on the availability of power plants and fuels, local fuel costs, and pricing regulations. In 2022, the annual average retail electricity price for all types of electric utility customers ranged from 39.85¢ per kWh in Hawaii to 8.24¢ per kWh in Wyoming.2. 

Prices in Hawaii are high relative to other states mainly because most of its electricity is generated with petroleum fuels that must be imported into the state.

1 U.S. Energy Information Administration, Electric Power Monthly, Table 5.3, February 2023, preliminary data.
2 U.S. Energy Information Administration, Electric Power Monthly, Table 5.6.B, February 2023, preliminary data.

Last updated: June 29, 2023, with data from the Electric Power Monthly, February 2023; data for 2022 are preliminary.

See URL

https://www.eia.gov/energyexplained/electricity/prices-and-factors-...

 

In the US, the cost of electricity to ratepayers ranges from about 8 c/kWh (Wyoming) to 40 c/kWh (Hawaii), for an average of about 12.5 c/kWh.

US ratepayers buy about 4000 billion kWh/y from utilities, costing about $500 BILLION/Y

With a lot of wind/solar/batteries/EVs by 2050, and ratepayers buying 8000 billion kWh/y, because of electrification, the average rate to ratepayers would be about 25 c/kWh,

US ratepayers would pay: two times the kWh x two times the price/kWh = $2,000 BILLION/Y
Electric bills would increase by a factor of 4, if all that scare-mongering renewable nonsense were implemented

NOTE: All numbers are without inflation, i.e., constant 2023 dollars

 

APPENDIX 10

LIFE WITHOUT OIL?

Life without oil means many products that are made with oil, such as the hundreds listed below, would need to be provided by wind and solar and hydro, which can be done theoretically, but only at enormous cost.

Folks, including Biden's handlers, wanting to get rid of fossil fuels, such as crude oil, better start doing some rethinking.

The above also applies to natural gas, which is much preferred by many industries, such as glass making, and the chemical and drug industries.

If you do not have abundant, low-cost energy, you cannot have modern industrial economies.

Without Crude Oil, there can be no Electricity.

 

Every experienced engineer knows, almost all the parts of wind, solar and battery systems, for electricity generation and storage, from mining materials to manufacturing parts, to installation and commissioning, in addition to the infrastructures that produce materials, parts, specialized ships, etc., are made from the oil derivatives manufactured from raw crude oil.

.

.

Views: 15

Comment

You need to be a member of Citizens' Task Force on Wind Power - Maine to add comments!

Join Citizens' Task Force on Wind Power - Maine

Comment by Willem Post on March 26, 2024 at 9:27pm

On snowy days, despite their huge installed capacity, MW, their generation, MWh, is way short of their “wished for” generation, due to “weather dependence”

That solar generation would normally have a big bulge at noon-time, which far exceeds demand.

Storing it in batteries and discharging 80% of it during the peak hours of late afternoon/early evening, is out of the question, as that would add at least
30 c/kWh, to the price of the solar electricity fed to the battery.

Go woke, go big-time broke.

Now you know why the electricity rates in California are skyrocketing.
A bunch of climate screwballs are in charge, stealing from your pocket
They make the rules that enable their stealing.

The only solution is to elect Trump by a landslide to far more than overcome any fraud, so he can undo all that dysfunctional wind/solar/battery BS

BATTERY SYSTEM CAPITAL COSTS, OPERATING COSTS, ENERGY LOSSES, AND AGING
https://www.windtaskforce.org/profiles/blogs/battery-system-capital...
 
EXCERPT:
Annual Cost of Megapack Battery Systems; 2023 pricing
Assume a system rated 45.3 MW/181.9 MWh, and an all-in turnkey cost of $104.5 million, per Example 2
Amortize bank loan for 50% of $104.5 million at 6.5%/y for 15 years, $5.484 million/y
Pay Owner return of 50% of $104.5 million at 10%/y for 15 years, $6.765 million/y (10% due to high inflation)
Lifetime (Bank + Owner) payments 15 x (5.484 + 6.765) = $183.7 million
Assume battery daily usage for 15 years at 10%, and loss factor = 1/(0.9 *0.9)
Battery lifetime output = 15 y x 365 d/y x 181.9 MWh x 0.1, usage x 1000 kWh/MWh = 99,590,250 kWh to HV grid; 122,950,926 kWh from HV grid; 233,606,676 kWh loss
(Bank + Owner) payments, $183.7 million / 99,590,250 kWh = 184.5 c/kWh
Less 50% subsidies (ITC, depreciation in 5 years, deduction of interest on borrowed funds) is 92.3c/kWh
At 10% throughput, (Bank + Owner) cost, 92.3 c/kWh
At 40% throughput, (Bank + Owner) cost, 23.1 c/kWh
 
Excluded costs/kWh: 1) O&M; 2) system aging, 1.5%/y, 3) 20% HV grid-to-HV grid loss, 4) grid extension/reinforcement to connect battery systems, 5) downtime of parts of the system, 6) decommissioning in year 15, i.e., disassembly, reprocessing and storing at hazardous waste sites. Excluded costs would add at least 10 – 15 c/kWh
 
NOTE: The 40% throughput is close to Tesla’s recommendation of 60% maximum throughput, i.e., not charging above 80% full and not discharging below 20% full, to achieve a 15-y life, with normal aging
Tesla’s recommendation was not heeded by the Owners of the Hornsdale Power Reserve in Australia. They excessively charged/discharged the system. After a few years, they added Megapacks to offset rapid aging of the original system, and added more Megapacks to increase the rating of the expanded system.
http://www.windtaskforce.org/profiles/blogs/the-hornsdale-power-res...
 
COMMENTS ON CALCULATION: 
Regarding any project, the bank and the owner have to be paid.
Therefore, I amortized the bank loan and the owner’s investment
If you divide the total of the payments over 15 years by the throughput during 15 years, you get the cost per kWh, as shown.
According to EIA annual reports, almost all battery systems have throughputs less than 10%. I chose 10% for calculations.
A few battery systems have higher throughputs, if they are used to absorb midday solar and discharge it the during peak hour periods of late-afternoon/early-evening. They may reach up to 40% throughput. I chose 40% for calculations.
Remember, you have to draw about 50 MWh from the HV grid to deliver about 40 MWh to the HV grid, because of A-to-Z system losses. That gets worse with aging.
A lot of people do not like these c/kWh numbers, because they have been repeatedly told by self-serving folks, low-cost battery Nirvana is just around the corner, which is a load of crap.

 

Maine as Third World Country:

CMP Transmission Rate Skyrockets 19.6% Due to Wind Power

 

Click here to read how the Maine ratepayer has been sold down the river by the Angus King cabal.

Maine Center For Public Interest Reporting – Three Part Series: A CRITICAL LOOK AT MAINE’S WIND ACT

******** IF LINKS BELOW DON'T WORK, GOOGLE THEM*********

(excerpts) From Part 1 – On Maine’s Wind Law “Once the committee passed the wind energy bill on to the full House and Senate, lawmakers there didn’t even debate it. They passed it unanimously and with no discussion. House Majority Leader Hannah Pingree, a Democrat from North Haven, says legislators probably didn’t know how many turbines would be constructed in Maine if the law’s goals were met." . – Maine Center for Public Interest Reporting, August 2010 https://www.pinetreewatchdog.org/wind-power-bandwagon-hits-bumps-in-the-road-3/From Part 2 – On Wind and Oil Yet using wind energy doesn’t lower dependence on imported foreign oil. That’s because the majority of imported oil in Maine is used for heating and transportation. And switching our dependence from foreign oil to Maine-produced electricity isn’t likely to happen very soon, says Bartlett. “Right now, people can’t switch to electric cars and heating – if they did, we’d be in trouble.” So was one of the fundamental premises of the task force false, or at least misleading?" https://www.pinetreewatchdog.org/wind-swept-task-force-set-the-rules/From Part 3 – On Wind-Required New Transmission Lines Finally, the building of enormous, high-voltage transmission lines that the regional electricity system operator says are required to move substantial amounts of wind power to markets south of Maine was never even discussed by the task force – an omission that Mills said will come to haunt the state.“If you try to put 2,500 or 3,000 megawatts in northern or eastern Maine – oh, my god, try to build the transmission!” said Mills. “It’s not just the towers, it’s the lines – that’s when I begin to think that the goal is a little farfetched.” https://www.pinetreewatchdog.org/flaws-in-bill-like-skating-with-dull-skates/

Not yet a member?

Sign up today and lend your voice and presence to the steadily rising tide that will soon sweep the scourge of useless and wretched turbines from our beloved Maine countryside. For many of us, our little pieces of paradise have been hard won. Did the carpetbaggers think they could simply steal them from us?

We have the facts on our side. We have the truth on our side. All we need now is YOU.

“First they ignore you, then they laugh at you, then they fight you, then you win.”

 -- Mahatma Gandhi

"It's not whether you get knocked down: it's whether you get up."
Vince Lombardi 

Task Force membership is free. Please sign up today!

Hannah Pingree on the Maine expedited wind law

Hannah Pingree - Director of Maine's Office of Innovation and the Future

"Once the committee passed the wind energy bill on to the full House and Senate, lawmakers there didn’t even debate it. They passed it unanimously and with no discussion. House Majority Leader Hannah Pingree, a Democrat from North Haven, says legislators probably didn’t know how many turbines would be constructed in Maine."

https://pinetreewatch.org/wind-power-bandwagon-hits-bumps-in-the-road-3/

© 2024   Created by Webmaster.   Powered by

Badges  |  Report an Issue  |  Terms of Service